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Abstract

Triad is a prototype distributed operating system
that provides a high-assurance trusted system platform
for real-time disiributed applications that process in-
formation of various classifactions. Triad provides an
extensible software architecture in which applications
can make uniform use of, and also build upon its sys-
tem capabilities. This paper describes the design of the
Triad system, the framework for applications using the
system, an ezample application scenario, and selected
specific distributed processing techniques used by the
Triad system.

1 Introduction

Triad is a prototype distributed operating system
providing a high-assurance trusted system platform
for real-time distributed applications that process in-
formation of various classifications. The Triad system
development has merged and advanced three areas of
advanced operating system functionality: multilevel
security, real-time, and distributed processing. This
paper describes the design of the Triad system and an
example of typical application-level processing using
all of the system’s primary capabilities.

In addition, two critical aspects of the design are
explored: extensibility and scalability. Extensibil-
ity results from Triad’s microkernel basis and its
client/server architecture. Triad system software is
implemented in servers running on the microkernel.
Application servers can easily extend the server archi-
tecture so that application software can make uniform
use of system and application capabilities. Scalability
results from another critical feature of the system’s
design: its decomposition into a framework of dis-
crete modules for separate distributed system capabil-
ities. Within this framework the prototype has imple-
mented each of these distributed system capabilities
using techniques appropriate to real-time distributed
military C3I applications. Because of the modular de-
sign, alternative techniques can be implemented with-
out perturbing the system design. As a result, the
system can be extended for systems with larger scales
and/or different distribution requirements.

Before describing Triad’s design in Section 3, we
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first describe the system’s basic capabilities in Sec-
tion 2. Section 6 provides an account of a typical
application’s execution and use of system capabilities.
Finally, Section 7 describes the extensibility of the sys-
tem, including sample extensions. Support for such
extensions is the focus of ongoing development of the
Triad system.

2 System Capabilities

The three primary capabilities of Triad are dis-
tributed system service, support for real-time appli-
cations, and the uniform enforcement of a security
policy throughout a Triad distributed system. A key
part of Triad’s architecture (described in [1]) is its ba-

sis on Trusted Mach (TMach) ! [3], a high-assurance
system base designed to meet B3 requirements for se-
curity functionality and assurance.? Triad’s security
capabilities derive in large part from this trusted sys-
tem base. Triad extends the TMach system so that
its security functionality is uniformly and consistently
performed throughout a group of hosts composing a
Triad system.

This approach—to start with a high-assurance
trusted system base and add distributed real-time
functionality—was motivated by our belief that it
would be more likely to yield a high-assurance sys-
tem than would an alternative strategy of over-laying
trust on an untrusted system with distributed real-
time functionality. This approach applies particularly
well to TMach, which was designed to be extensible, as
a result of its multi-server architecture and Mach [10]
microkernel base.

Triad’s real-time design relies on the real-time no-
tion of timeliness, i.e., the restriction that some com-
putations complete within a finite time window. The
base of Triad’s real-time capabilities is its schedul-
ing subsystem, which allows threads of execution to
set deadlines and which uses deadlines to determine
which threads to schedule. Such time-bound process-
ing is ensured by deadline-based scheduling that is uni-

1Trusted Mach and TMach are Registered Trademarks of
Trusted Information Systems, Incorporated. ’

2TMach is currently under evaluation for a B3 TCSEC rating-
and an E5/F-B3 ITSEC rating.

Bpproved for public release;
Distribution Unlimited
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and to provide a basis for controlled sharing of infor-
mation between organizations. A number of computer
operating system security controls [2, 3, 4, 7, 10] have
been proposed, but most of these techniques either map
poorly to commercial requirements or impose excessive
administrative overheads. Domain and Type Enforce-
ment (DTE) [1] is a relatively recent operating sys-
tem access control mechanism that holds promise to
provide needed security flexibility and strength while
controlling administrative costs. We believe that a
fundamental question for practical commercial security
is whether strong-but-flexible access controls, such as
DTE, can be combined with firewall defenses in a way
that preserves the practicality of firewalls while sub-
stantially improving security.

This paper reports on our experience with a DTE-
enhanced firewall prototype. Our preliminary re-
sults indicate that DTE access controls can be in-
tegrated with firewalls to cost-effectively control re-
sources shared through firewalls and to protect en-
terprise resources from possibly malicious insider pro-
grams. After reviewing the primary concepts of DTE,
this paper presents the design of a DTE firewall and the
mechanisms it uses to control imported and exported
services. This paper next presents our informal eval-
uation of DTE firewall security, functionality, compat-
ibility, and performance characteristics. Finally, this
paper reviews related work and future directions, and
presents conclusions.

2. DTE review

DTE [1, 15, 18] is an enhanced form of type enforce-
ment [4, 13, 14], which is a table-oriented mandatory
access control mechanism. DTE has three main advan-
tages over type enforcement. First, the security policy
is specified in a high level language that reduces the
burden of expressing, verifying, and maintaining secu-
rity rules. Second, security attributes on objects are
implicit, thereby allowing a file hierarchy to be typed
concisely. Finally, DTE provides mechanisms for back-
ward compatibility with existing software and with sys-
tems not running DTE.

As with a number of other access control mecha-
nisms [2, 3, 4, 7, 11], DTE considers a system to be split
logically into two categories: passive entities (e.g., files
or network packets) and active entities (usually pro-
cesses). A type is associated with each passive entity,
or object; a domain and a DTE-protected user identi-
fier (unchangeable even by the root user) is associated
with each active entity, or subject. Using a language-
based specification, DTE expresses allowed interactions
between subjects and objects. Access control decisions

are made by consulting a DTE database consisting of
the “compiled” specification to determine if the sub-
ject’s domain has the requested access (e.g., read or
write) to the object’s type. DTE also expresses al-
lowed interactions between subjects. Access control
logic consults the DTE database to determine if a sub-
ject A’s domain has the requested access (e.g., execute
or kill) to a subject B’s domain.

To extend DTE protection across networks, DTE
treats each network packet as an object with three as-
sociated attributes (carried in the IP option space of
each datagram): the DTE type of the information, the
domain (source domain) of the source process, and the
DTE-protected UID of the source process. A process
can send or receive a message object only if the pro-
cess’s domain has the appropriate access to the DTE
type of the message. Communication with non-DTE
systems also is mediated: when a message originates
from a non-DTE system, the receiving DTE system as-
signs a type (and domain) to the message.? Similarly, a
DTE system mediates a message before sending it to a
non-DTE system to ensure that the domain associated
with the non-DTE system can read the messages. If
the associated domain cannot read the message’s type,
the message is not sent.

In our prototype, UNIX® kernel changes to enforce
DTE mediation are localized to a relatively small sub-
system; all system calls that represent process accesses
to other processes or to objects are passed through this
subsystem.? During the initialization phase of a DTE
kernel (i.e., at boot-time), the DTE subsystem reads
a security specification written in the DTE Language
(DTEL) from the boot device, parses the specification
into access control data structures, and then mediates
the system calls of all processes (including the first
system process) according to the specification, as de-
scribed above.

3. DTE Firewall overview

A DTE firewall is an enhanced application gateway
firewall. It runs application gateways in controlling

2A DTE policy currently associates attributes with packets
received from non-DTE systems based on source IP address.
While IP addresses can be spoofed in IPv4, the approach is ad-
equate for prototyping. Stronger mechanisms could be provided
using IP-layer cryptography, such as that proposed for IPv6.

3UNIX is a registered trademark in the United States and
other countries, licensed exclusively through X/Open Company
Ltd.

4QOur prototype is based on BSD/OS 2.0 (and recently 2.1), a
widely available PC UNIX. Excluding comments, DTE enhance-
ments to the kernel represent approximately 14,000 lines of code,
and DTE enhancements to the firewall proxies represent approx-
imately 700 hundred lines of code.
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Figure 1. DTE Firewall Concept of Operations

DTE domains and mediates network communications
based on DTE security attributes.

Figure 1 shows an overview of a network enclave
protected by a DTE firewall. Some hosts behind the
firewall are running DTE; there may or may not be
DTE hosts outside the perimeter. As with “normal”
firewalls, a DTE firewall intercepts and mediates all
network traffic between internal and external hosts.
Based on the DTE policy, the DTE firewall associates
domains with non-DTE hosts and associates DTE com-
munication attributes with data received from non-
DTE hosts. As described in section 2, the DTE firewall
and DTE hosts use the communication attributes to
ensure that network messages are received only by do-
mains that can appropriately control the type of data
carried by the messages. If the end host is a DTE
system, it carries the responsibility for confining net-
work services: in this case, the DTE firewall’s role is to
coordinate the endpoints’ security contexts by passing
along the DTE communication attributes. In the case
of non-DTE hosts, the DTE firewall performs access
control on behalf of non-DTE hosts (interior or exte-
rior) by mediating the network messages sent to each
non-DTE host based on whether the host’s associated
domain grants access to the DTE attributes associated
with the messages. By coordinating DTE policies be-
tween DTE endpoints (and on behalf of non-DTE end-
points), the DTE firewall is positioned both to protect
and control exported services and to confine network
clients that import services.

3.1. Controlling exported services

Figure 2 illustrates our general strategy for export-
ing services safely: run network server applications ei-
ther on DTE firewalls or on DTE hosts behind the secu-
rity perimeter and use DTE to control access to local
resources. In figure 2, a DTE server system hosting
a network server application (service) communicates
through a DTE firewall to respond to service requests
from a non-DTE external host (Client System). Since
the client shown is not running DTE, the firewall as-
sociates type t and domain sd with messages received
from it. The DTE firewall relays the DTE communica-
tion attributes to the server: these attributes establish
DTE access controls consistent with the level of trust
the firewall places in the client.

When a client attempts to initiate a connection with
the server, the inetd daemon on the firewall runs the
netacl program, which determines whether communi-
cation is allowed between the client and server hosts®
and executes the prozy application for the specified pro-
tocol. The netacl program executes the prozy in the
prozy_d domain, which is specific to the protocol (e.g.,
the HT'TP proxy runs in the domain fw_http_d) and has
DTE access permissions sufficient to pass DTE commu-
nication attributes between the client and the server.®

5This is standard application gateway firewall functionality;
the check is based on IP addresses or host names.

6This paper assumes a homogeneous DTE policy (having the
same domain and type definitions) for all hosts; future work will
introduce interactions between hosts running different policies
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Figure 2. Exporting Services Safely

3. Connect to server The proxy connects to the
DTE server system, passing the DTE attributes
of the client.

The prozy_d domain can be configured to control which
clients may use the service.
At a high level, the prozy’s algorithm is simple:

1. Extract client attributes The DTE kernel’s

socket abstraction provides an interface to retrieve
the client attributes (%,sd,d) each time data is read
from the client socket. Because the attributes are
carried in each IP message, they are available for
both connection-oriented (e.g., TCP) and connec-
tionless (e.g., UDP) protocols.

. Optionally authenticate If the client is not a
DTE system, the proxy authenticates the client
using the method specified in the firewall’s config-
uration. If the client is a DTE system, the proxy
may choose to trust the DTE UID (d) in the com-
munication attributes, which indicates the user’s
identity as authenticated by the client system. Us-
ing a DTE client’s authentication attribute in-
creases usability and performance by relieving the
client of the need to authenticate for each service
initiation (this has resulted in DTE firewall per-
formance increases for some test cases).

and dynamic policy reconfiguration.

. Pass data and DTE attributes bidirection-

ally The DTE-enhanced proxy scans and copies
data as in a conventional firewall except that it
also passes the DTE communication attributes
through to each endpoint. Also, for each message-
receive and message-send operation, the proxy's
domain is mediated (by the firewall’s DTE kernel)
with respect to the type of data being received or
sent: the types of data allowed through the firewall
therefore can be adjusted by adjusting the types
of data that the proxies are allowed to read/write.
Because DTE attributes are associated with re-
mote non-DTE hosts by the firewall, the policy
also can be adjusted so that some types of data are
not sendable (or receivable) from specified hosts
or networks. When the external host is running
DTE, the control is more fine-grained and com-
munications using specific types of data can be
allowed or disallowed for individual domains (or
processes) on the remote host.




Inside

Client System

Outside

-

X%
[Fite_1] [File_2|

sensitive_t network_t

Process A creates process B,
possibly also executing a new
(B image to change domains.

®- Processes A and B

communicate via sockets.

Process A executes image B.

(t,sd,d)

Process A running in domain d.

DTE communication attributes:
type, source domain, and DTE uid.

Communication attributes associated
with a non-DTE system.

Figure 3. Importing Services Safely

As shown in figure 2, when the prozy application
connects to the DTE server, the inetd program on the
server runs the dtecl program. This program, like net-
acl, examines the DTE attributes sent in the connec-
tion request and then executes the server application
service in domain sd, the domain of the client. By
running the server application in the client’s domain,
the system ensures that the client and server run in a
compatible security context: if the client is anonymous
(e.g., anonymous FTP or HTTP), the server runs in
a domain granting very limited access to data on the
server system; if the client is a known quantity (perhaps
administered by a business partner, or an authorized
guest), the server runs in a domain granting access to
more types of data.” However, for services that do
not restart with each client request, such as NFS, a
different strategy is needed. These services employ a
kernel-supported “auxiliary” domain (i.e., the source
domain of a received message) to further restrict the
server when it is working on behalf of a particular
client; DTE mediation then is performed using both
domains. Because the service must ask the kernel to

7The access level granted to domains depends upon the DTE
policy and is user-configurable,

load and unload the auxiliary domain, this technique
is available only to trusted servers.

The strategy of running the server in the client’s do-
main does not necessarily result in least privilege, since
the common domain may overstate access needs of the
client or the server. However, the strategy is surpris-
ingly simple and approximates least privilege (in our
experience) closely enough to separate user roles and
to protect the system. The DTE policy on the server
host protects the host from the server application (us-
ing root confinement [18]) and also protects the server
application from other programs that may run on the
server host. Additionally, the types writable by the sd
domain indelibly label data that originated from the
exterior network. This labeling can alert users and
programs that the data was received from the network
and could be untrustworthy.

3.2. Controlling imported services

A DTE firewall controls imported services using the
same mechanisms it uses to control exported services:
the DTE firewall relays DTE communication attributes
from an internal client system to potential server sys-




tems and performs mediation on behalf of non-DTE
clients and servers. The overall effect of this mediation
is to prevent a client from using a server unless either
the server is running in a compatible domain or the
server runs on a DTE host that is willing to start a copy
of the server in the client’s domain. As a consequence
of these mechanisms, the same client operating in dif-
ferent domains may have differing levels of access to ex-
ternal services. Users on a DTE client, therefore, may
choose restricted domains when accessing untrusted or
unknown services (e.g., surfing the web), and choose
more privileged domains when accessing important cor-
porate data. Additionally, this constraint ensures, for
example, that information cannot be accidentally sent
to competitors (e.g., using mail) and that files cannot
be accidentally imported from untrustworthy environ-
ments and executed.

In figure 3, a DTE client system runs a network
program that communicates through the DTE firewall
to access a service provided by a non-DTE external
host. Figure 3 shows the user session running in do-
main shell_d and the client application running in do-
main client_d.2 The domain client.d controls the client
application in two important ways: 1) it prevents a suc-
cessful attack on the client from damaging the client
system, and 2) it labels data generated by the client
application with a type that identifies the data’s origin
and indicates the amount of trust that can be placed
in it. In addition, the DTE policy on the client system
protects the client application from attacks by other
running programs. This is particularly useful for pre-
venting software of questionable quality (e.g., the most
recent version of a free editor) from accessing the data
streams of important client applications such as elec-
tronic commerce, banking, or Internet telephone pro-
grams.

As shown in figure 3, the client application commu-
nicates via sockets with the DTE firewall which then
communicates with the external server. Since the serv-
ing host is not running DTE, the DTE firewall prevents
communication with the serving host unless the DTE
firewall associates a compatible domain with the host.

4. Network services evaluation

To assess the overall impact of DTE firewalls and se-
lected hosts, we have evaluated informally the remote
login (rlogin), TELNET, mail, FTP, NFS, and HTTP

8A DTE client system’s DTE policy can be configured to give
the user discretion in which domain the client application runs,
to require that the client application run in the domain of the
user’s shell, or to specify automatically a domain in which the
client application runs.

network services running through a DTE firewall. The
evaluation considered the security, preservation of func-
tionality, compatibility with non-DTE hosts, and per-
formance of these services. For purposes of evaluation,
we used the BSD/OS DTE prototype system and the
T1IS Firewall Toolkit (V1.3).

4.1. Security

Network attacks often exploit subtle weaknesses in
programs that allow attackers to misuse program ac-
cess rights, gain control over systems, steal or destroy
data, and deny access to authorized users. The effec-
tiveness of such attacks can be reduced if programs
execute with the minimum access rights required to
perform their functions. Our informal metric for eval-
uating the security of a DTE firewall, therefore, is the
extent to which it restricts the access rights used by
programs running on the firewall or on DTE systems
that communicate with the firewall. We have identified
three primary areas where program authorizations are
reduced by DTE:

confined proxies A DTE firewall confines each net-
work proxy in a separate domain. In general,
the domains used to confine proxies prevent write
access to system and administrative data and
also prevent proxies from running other programs.
This confinement protects the firewall from a pos-
sibly subverted proxy: for example, if the FTP
proxy is compromised, it cannot alter system files.

Since proxies are trusted to propagate type labels
of user data that passes through them, a faulty or
subverted proxy may cause user data to be misla-
beled, however this mislabeling can be limited: a
proxy can attach a type label to an object only if
the proxy’s domain grants write access to the la-
bel. Consequently, the firewall’s DTE policy can
be configured to control the discretion afforded a
proxy as well as to restrict which types of data are
allowed to flow through different network service
proxies.

protected servers on the firewall A DTE firewall
can run network services in domains that protect
their data and program files from network-based
attack. By running services on the firewall (or, for
load-sharing purposes, on companion DTE server
hosts), the integrity of network services can be
improved substantially even though the services
are made available to the Internet. While running
possibly vulnerable network services on a conven-
tional firewall would pose an unacceptable security
hazard, a DTE firewall can execute such services
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safely because their access rights are limited via
DTE.

defense in depth As discussed in section 3.1, DTE
firewalls coordinate security protections of DTE
servers behind a security perimeter to restrict the
access rights of programs that are run on behalf of
external clients. When DTE servers are available,
this strategy ensures that processing carried out
on behalf of external clients is controlled in ap-
propriate DTE domains that prevent clients from
successfully tricking interior services into granting
unauthorized access. This technique can-be used
to prevent unauthorized export of sensitive data
through ubiquitous services, such as mail, and to
export NFS hierarchies selectively to the Internet.
Furthermore, this strategy typically does not rely
on the correctness or security sophistication of ser-
vices exported through the DTE firewall since the
control is enforced by DTE on the serving hosts.’

The DTE firewall policy used to conduct our ex-
periments consists of 105 lines of DTEL specification
on the firewall and 122 lines of DTEL on supporting
DTE hosts. The addition of a new network service or
domain adds typically only 5 or 6 lines to these speci-
fications. Additionally, small extensions to domains in
the policy can be made that apply uniformly across the
specification and expand or constrict access rights for
all network services. As a result, DTE policy complex-
ity can be controlled, resulting in enhanced assurance
that protections are maintained as new metwork ser-
vices are added. The combination of these techniques
has significantly reduced the access rights used by soft-
ware running on (or through) the firewall while allow-
ing the software to function correctly. Based on our
informal metric, we belive that these techniques have
significantly increased network enclave security.

4.2. Functionality

For importing services, functionality is rarely af-
fected. For services such as rlogin and TELNET, when
the client is a DTE system, user authentication can
be supplied automatically by the client DTE system
and the proxy can accept and use this authentication
instead of requiring additional authentication. Under
some circumstances, this can increase usability; how-
ever, the DTE UIDs must be set up in the firewall
configuration, adding a small amount of administrative
overhead. Also, services such as HTTP and FTP can

9The exception is the NFS daemon, which for performance
reasons is implemented as a trusted server.

be made more widely available because of the reduced
risk of malicious programs (e.g., applets).

" Functionality for exported services has increased in
several ways. With the additional security of running a
server in a domain restricted according to trust level of
the client, the server no longer needs to be located out-
side the firewall. Instead it can be on a system behind
the firewall, or even on the firewall itself. Furthermore,
with the server starting in the domain of the client, it is
feasible to grant access to different classes of informa-
tion based on that domain — something very useful for
HTTP and FTP. In this way, for example, an anony-
mous FTP server can regulate access to files without
resorting to multiple servers or hidden files. Also, a sin-
gle HTTP server can provide sensitive data to users in
trusted domains and general data to users in untrusted
domains without fear of having the data compromised
or altered. NFS requires slightly more administrative
overhead, but becomes safely available through firewall
security perimeters — something not possible before.

4.3. Compatibility

Overall, compatibility has been maintained: each
service can interoperate either with DTE or non-DTE
systems. Furthermore, the application-level proxies re-
vert to standard Firewall Toolkit behavior when run
on a non-DTE kernel. The use of IP options to carry
DTE information removes the need for changing the
protocols.

With the exception of the NFS server, which is
kernel-resident in UNIX, few of the client or server
applications have been changed to function with DTE
firewalls. Mail final delivery agents were modified to be
cognizant of the different types associated with users’
mailboxes. Also, the rlogin server was modified to take
advantage of DTE authentication mechanisms.

Some of the services running under DTE require
changes in the administrative configuration. For exam-
ple, external NFS clients must explicitly name the fire-
wall host as the server whose file systems they wish to
mount, since they cannot know the name of the server
behind the firewall.

4.4, Performance

To evaluate the performance of DTE and DTE Fire-
walls, we have constructed a testbed consisting of three
Pentium 166MHz machines on an isolated network run-
ning BSD/OS 2.0 and version “straw_19+” of the DTE
prototype system.!® We ran each test on a number of

10This is the 19th internal version of the BSD/OS-based DTE
prototype with some performance enhancements incorporated;




Data Baseline Percentage Change (%)
Protocol Transferred | (n,n,n) | (nyn) [ (nyy) | yn) | Gyy)
0K 1.98 0 0 -15 -10
rlogin 200K 3.43 6 8 -16 -23
- 500K 5.33 <1 <1 -14 -16
5MB 32.21 <1 <1 -2 -2
0K 6.79 <1 <1 -15 -12
TELNET 200K 7.79 <1 2 -10 -10
500K 9.89 1 1 -9 -7
5MB 41.36 <1 1 -2 -1
0K 1.98 9 13 6 11
200K 3.98 4 6 4 5
FTP 500K 4.59 3 4 3 4
5MB 14.23 3 6 <1 3
32MB 70.33 2 2 -1 <1
Concurrency 1K 355.81 8 13 12 15
Level 4 50K 64.71 71 89 92 94
Concurrency 1K 199.20 22 24 26 25
Level 8 50K 60.23 75 94 97 114

Figure 4. Raw Performance in Seconds and DTE Overheads

configurations where configuration is a triple (client,
firewall, server) in which “y” indicates a system run-
ning DTE and “n” indicates a host not running DTE
(so (n,y,n) is the configuration where only the firewall
is running DTE). We did not measure the performance
of mail since it is not interactive.

For rlogin, TELNET, and FTP, we used an Expect
script to repeatedly authenticate and transfer various
amounts of information through the service. Perfor-
mance numbers were calculated by averaging results
from 20 iterations of each test.

For HTTP, we used ZeusBench,'! a standard bench-
mark that connects to the server via the HT'TP proxy,
retrieves a specified web page, and closes the connec-
tion. We varied the concurrency, the document length,
and the number of requests (1000 requests for 1K doc-
uments, and, to save time, 32 requests for 50K docu-
ments).

As shown in figure 4, DTE overheads for rlogin,
TELNET, and FTP are modest, with a maximal im-
pact of 13% degradation in the worst case; with addi-
tional performance optimization, these probably could
be reduced. As is shown in the table, performance ac-
tually increases (the negative numbers in the table) for
rlogin and TELNET when the client is running DTE,

many more enhancements could be added in future versions.
11ZeusBench version 1.0 is copyright Zeus Technology Limited
1996.

because the DTE client passes a DTE UID which the
firewall can accept instead of performing costly authen-
tication. This performance increase does not manifest
for FTP because the FTP daemon has its own, always
invoked, built-in authentication which we did not dis-
able.

Unlike rlogin, FTP, or TELNET, the HTTP service
is approximately 50% slower in the worst case. Af-
ter analysis, we believe this performance decline for
HTTP is somewhat artificial, resulting from the low-
performance implementation of the HT'TP application
gateway in the Firewall Toolkit which does a separate
read() and write() system call for each byte transferred.
This overstates DTE system call overheads because, in
this test, the system spends most of its time dispatch-
ing system calls that each do very little work. More
recent application gateways, such as Gauntlet’s,!? per-
form more efficient I/O; we expect that DTE perfor-
mance for those gateways should approximate the DTE
performance for rlogin, TELNET, and FTP.

For NFS, we used Iozone and NFSstones, two
widely-used NFS benchmark packages. The Iozone
package tests sequential file I/O by writing a 64 MB
sequential file in 8 K chunks, then rewinds it, and reads
it back (i.e., it measures the number of bytes per sec-
ond that a system can read or write to a file). We

12Gauntlet is a registered trademark of Trusted Information
Systems, Inc.




Baseline | Percentage Change (%)

(nn,n) | (nyn) | (n,y,y)

Tozone Bytes/Second Written || 107,372.50 -4 -20
Bytes/Second Read 409,430.50 -28 -38

NFSstones | NFSstones/Second 69.83 -18 -38

Figure 5. NFS Test Results (larger numbers indicate better performance)

chose a file size large enough to prevent the cache from
dominating the results. NFSstones creates and deletes
many directories, then does a variety of file accesses,
including writes, sequential reads, and non-sequential
reads. Using these results in a formula, it generates a
single numeric indicator of relative NFS performance.

As shown by the results in figure 5, performance
of writes under NFS is moderately affected by the
addition of DTE to the firewall; adding DTE to the
server produces a higher impact on performance, with
a 20% performance hit. Reads under NFS, however,
dominate NFS performance, with a slowdown of 38%
when both the firewall and the server are DTE hosts.
However, neither the NFS application-level gateway
nor the DTE-enhanced NFS server is optimized. Two
possible locations for performance degradation in the
NFS server are the double mediation necessary because
of the primary/auxiliary domain combination and the
manipulation of additional file handles needed for DTE
mediation in NFS-mounted files. (We believe this last
issue dominated the results and can be largely amelio-
rated.)

5. Related work

DTE firewalls are related most closely to firewall
techniques [5, 6], mandatory access controls [2, 3, 4, 7,
10], and type-enforcing systems [4, 13, 14, 16, 20].

There are three fundamental types of firewalls:
packet-filtering, circuit gateway, and application gate-
way. Packet-filtering firewalls allow packets to pass
through only if they satisfy a set of filtering rules based
on packet direction, physical interface, and a variety of
packet fields (e.g., source address, destination address,
UDP/TCP port numbers, etc). Circuit gateway fire-
walls force all TCP connections to go through an inter-
mediary process which performs initial access control
and then copies (and perhaps audits) data streams.
Application gateway firewalls force data streams pen-
etrating a firewall to be processed on a per-protocol
basis by a trustworthy application proxy program that
audits protocol usage and possibly screens damaging
data. DTE could be added to either packet-filters or

circuit gateways; however, we have incorporated DTE
into application gateway firewalls because they provide
greater opportunities to explore interactions between
DTE and individual protocols.

Mandatory access controls, sometimes called “rule-
based” controls, are centrally configured by system
managers and then enforced on ordinary users and
their software. A variety of access control tech-
niques [1, 2, 3, 4, 7, 10] provide centralized control over
resources. In general, DTE policies are a proper super-
set of the DoD lattice model [2] and its integrity varia-
tion [3]: DTE can be configured to provide a lattice but
also can enforce non-hierarchical security policies such
as assured pipelines [4] that drive information through
policy-specified pathways of arbitrary connectivity and
complexity. DTE also can be configured to provide in-
tegrity categories as in [10] and to support the transfor-
mation procedures and constrained data items of the
Clark/Wilson model [7].

A number of systems have implemented type en-
forcement, including the Secure Ada Target [4] (later
renamed LOCK [14]), Trusted XENIX [16], and
DTOS [8], which adds type enforcement to Mach port,
task, and virtual memory abstractions. Type enforce-
ment also has been integrated into at least one Internet
firewall product, the SCC Sidewinder'® system, [17] an
embedded turnkey system employing a fixed, vendor-
supplied access control configuration. DTE [1], an
enhanced form of type enforcement, was first demon-
strated on an OSF/1 UNIX prototype and later ported
to BSD/OS.

6. Future directions

This paper discusses the first phase of our work: a
manually-administered DTE firewall prototype. We
plan two additional phases to increase the user-
friendliness and flexibility of the prototype.

For the second phase, we have formulated simple
DTEL modules for organizing policies into more main-

13Gidewinder is a trademark of Secure Computing Corpora-
tion, Inc.




tainable segments. We also have formulated enhance-
ments that allow DTEL modules to express adminis-
trative agreements between network enclaves and to
support interactions between compatible but not iden-
tical policies. Currently, we are experimenting with
loosely-constrained DTEL modules that can be loaded
and unloaded while the system runs, at the discretion
of the administrator. Since the modules may affect
running processes and existing DTE policy elements
(in this phase), the administrator must exercise caution
in their use. Additionally, we have integrated IP-layer
cryptography into the DTE kernel in order to extend
DTE protections across unprotected WANs. For this
encryption, we chose IPSec in order to provide IPv6
protection mechanisms to IPv4 packets, and are bas-
ing our prototype on the Naval Research Laboratory’s
IPv6/IPSec Software Distribution. As IPv6 becomes
more widely available, we will port the DTE network
code to use its features.

In the third phase, we are designing facilities for cen-
tral administration of security policies within enclaves,
and for convenient configuration of policy elements that
are shared between enclaves. In this phase, each DTE
host will boot with a minimal security policy and then
contact an enclave-specific Domain and Type Author-
ity (DTA) server to obtain the remainder of its policy,
which will be expressed as a set of dynamically load-
able DTEL modules. The DTA for an enclave will be
responsible for managing consistent and dynamic se-
curity policies for hosts within its enclave and also for
configuring policies in the DTE firewall and specified
hosts to support relationships with external entities.

7. Conclusions

As currently realized, firewall security perimeters
are inexpensive but also inflexible and somewhat weak.
A central question for practical commercial security is
whether the advantages of firewalls can be preserved
while adding additional security controls to protect
against inside attacks, to protect sensitive data from
export, and to fortify servers against corruption from
the network. Adding DTE to firewalls appears to ad-
dress many security concerns because DTE supports
role-based policies that relate resource access to indi-
vidual responsibilities within the enterprise; and be-
cause roles provide an intuitive framework for express-
ing controlled sharing of resources between organiza-
tions. We believe the primary question for enhanced-
security firewalls is whether useful security features
can be added while preserving the functionality of ex-
isting applications and protocols, interoperating with
non-enhanced systems and programs, imposing mini-
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mal performance overheads, and imposing acceptable
administrative costs.

This paper reports our results with a prototype
DTE firewall system that runs application gateways
in DTE domains, exports network services that run in
DTE-protected environments either on the firewall it- -
self or on protected servers, and controls interactions
with non-DTE systems. In general, our prototype
DTE firewall coordinates DTE security protections of
communicating endpoints and ensures that clients and
corresponding servers execute in the same DTE do-
This relatively simple strategy has allowed
us to demonstrate controlled sharing through the fire-
wall, protection of sensitive information, confinement
of client applications, and increased protection of net-
work servers from client-based attacks. We have found
that security can be increased significantly if DTE runs
on the firewall and selected server systems. In addition,
running DTE on client systems enables support for user
roles and confinement of client applications. For rlogin,
TELNET, FTP, HTTP, and mail, we have found no
significant decrease in functionality or compatibility.
The functionality of the NFS protocol has increased
since it previously could not be exported safely. For
many protocols, performance is not significantly af-
fected by DTE; we believe that significant performance
impacts for NFS and HTTP can be eliminated through
optimization techniques. Finally, administrative costs,
while still an open issue, appear to be manageable since
useful DTE policies can be expressed concisely.
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